Tetraphenylphosphonium- und Natrium-15-Krone-5-Tetrachlorocyclodithiadiazenorhenat

VON ULRICH MÜLLER, STEFAN VOGLER UND KURT DEHNICKE

Fachbereich Chemie der Universität, Hans-Meerwein-Strasse, D-3550 Marburg, Bundesrepublik Deutschland

UND DIETER FENSKE

Institut für Anorganische Chemie der Universität, Engesserstrasse 30.45, D-7500 Karlsruhe, Bundesrepublik Deutschland

(Eingegangen am 23. Oktober 1989; angenommen am 16. Februar 1990)

Cl Cl

Cl Cl

S(: N(

N

P(C(

C(C(C(

C(C(

Č(

C(

C(C(C(C(C(C(

C() C() C()

C(C(

C(

Abstract. Tetraphenylphosphonium 2,2,2,2-tetrachloro-1,3-diaza-4,5-dithia-2-rhenate. $[P(C_6H_5)_4]$ - $[\text{ReCl}_4(N_2S_2)]$, prepared from $[P(C_6H_5)_4][\text{ReCl}_4-$ (NSCl)₂].CH₂Cl₂ by reduction with diphenylacetylene in CH₂Cl₂, $M_r = 759.56$, triclinic, $P\overline{1}$, a =7.674 (4), b = 12.697 (7), c = 14.606 (7) Å, a = 12.697 (7), c = 14.606 (7) Å, a = 12.697 (7), c = 14.606 (7) Å, a = 12.697 (7), c = 14.606 (7) Å, a = 12.697 (7), c = 14.606 (7) Å, a = 12.697 (7), c = 14.606 (7) Å, a = 12.697 (7), c = 14.606 (7) Å, a = 12.697 (7), c = 14.606 (7) Å, a = 12.697 (7), c = 14.606 (7) Å, a = 12.697 (7), c = 14.606 (7) Å, a = 12.697 (7), c = 14.606 (7) Å, a = 12.697 (7), c = 14.606 (7) Å, a = 12.697 (7), c = 14.606 (7) Å, a = 12.697 (7), c = 14.606 (7) Å, a = 12.697 (7), c = 14.606 (7) Å, a = 12.697 (7), c = 14.606 (7) Å, a = 12.697 (7), c = 14.606 (7) Å, a = 12.697 (7), c = 14.606 (7) Å, a = 12.697 (7), c = 12.697 (7), c = 14.606 (7) Å, a = 12.697 (7), c = 14.606 (7) Å, a = 12.697 (7), c = 14.606 (7) Å, a = 12.697 (7), c = 14.606 (7) Å, a = 12.697 (7), c = 14.606 (7) Å, a = 12.697 (7), c = 14.606 (7) Å, a = 12.697 (7), c = 14.606 (7) Å, a = 12.697 (7), c = 14.606 (7) Å 77.64 (4), $\beta = 80.68$ (4), $\gamma = 89.78$ (5)°, V = 1371 Å³, Z = 2, $D_x = 1.84$ g cm⁻³, λ (Mo K α) = 0.7107 Å, μ $= 51.1 \text{ cm}^{-1}$, F(000) = 736, T = 293 K, R = 0.056 for7009 observed unique reflexions. (1.4.7.10.13-Pentaoxacvclopentadecane)sodium 2.2.2.2-tetrachloro-1,3-diaza-4,5-dithia-2-rhenate, $Na(C_{10}H_{20} O_{5}$ [ReCl₄(N₂S₂)], prepared from [ReCl₃(NSCl)₂]₂ with NaF and 15-crown-5 in acetonitrile, $M_r =$ 663.43, monoclinic, $P2_1/c$, a = 10.167 (2), b =15.241 (5), c = 14.536 (3) Å, $\beta = 103.67$ (2)°, V =2189 Å³, Z = 4, $D_x = 2.01$ g cm⁻³, λ (Mo K α) = $0.7107 \text{ Å}, \mu = 59.9 \text{ cm}^{-1}, F(000) = 1280, T = 292 \text{ K}.$ R = 0.044 for 2726 unique observed reflexions. Both compounds contain $[ReCl_4(N_2S_2)]^-$ ions having a planar ReN₂S₂ ring with short ReN and NS bonds (mean values 1.82 and 1.53 Å respectively) and rather long S-S bonds; the S-S bond length is 2.543 (4) Å for the PPh₄⁺ compound and 2.704 (5) Å for the Na-15-crown-5 compound. The packing in $[PPh_{4}][ReCl_{4}(N_{2}S_{2})]$ closely resembles that in the $[AsPh_4][ReCl_4(N_2S_2)]$ non-isotypic (monoclinic. P2/n, the main difference being a tilting of the anions causing a loss of the twofold rotation axes. In $[Na(15-crown-5)][ReCl_4(N_2S_2)]$ the Na⁺ ion is coordinated to the five O atoms of the crown ether and to two Cl atoms of the anion.

Einleitung. Das Ion $[\text{ReCl}_4(\text{NSCl})_2]^-$ enthält zwei Chlorthionitren-Gruppen Re=N=S-Cl, deren Chloratome durch Reduktionsmittel leicht entfernt werden können, wobei sich der Cyclothiazenokomplex $[\text{ReCl}_4(\text{N}_2\text{S}_2)]^-$ bildet, der einen ReN₂S₂-Ring enthält (Dehnicke & Müller, 1985; Conradi, Hauck, Müller & Dehnicke, 1986; Hiller, Mohyla,

0108-2701/90/111989-04\$03.00

Strähle, Hauck & Dehnicke, 1984). Überraschenderweise bildet sich das $[\text{ReCl}_4(N_2S_2)]^-$ -Ion aber auch, wenn $[\text{ReCl}_4(\text{NSCl})_2]^-$ mit Natriumfluorid und dem Kronenether 15-Krone-5 in Acetonitril umgesetzt wird; diese Reaktion hatten wir in der Absicht durchgeführt, die Chloratome gegen Fluoratome zu substituieren, was jedoch nicht eintrat. Wahrscheinlich fungiert hierbei Acetonitril als Reduktionsmittel.

Experimentelles. Zu einer Lösung von 1,76 g [PPh₄]-[ReCl₄(NSCl)₂].CH₂Cl₂ (1,92 mmol; Müller, Kafitz &

Tab	elle 1	. Atomkoordin	aten und .	Parameter	$U_{\rm ad}$ (Å ²)
für	den	äquivalenten	isotropen	Tempera	turfaktor
	(Ha	amilton, 1959)	für [PPh ₄][$ReCl_4(N_2S)$	₂)]

	x	у	Ζ	U_{aq}
(1)	0,19889 (4)	0,32740 (3)	0,25206 (3)	0,0407 (1)
(1)	0,2386 (3)	0,1663 (2)	0,1925 (2)	0,066 (1)
2)	0,1986 (3)	0,4820 (2)	0,3185 (2)	0,065 (1)
(3)	0,4771 (3)	0,3904 (2)	0,1614 (2)	0,0634 (8)
(4)	0,3128 (3)	0,2374 (2)	0,3854 (2)	0,077 (1)
0	-0,2206 (3)	0,2998 (2)	0,2905 (2)	0,0625 (8)
2)	-0,0951 (3)	0,4131 (2)	0,1261 (2)	0,076 (1)
i) –	-0,0260 (8)	0,2908 (5)	0,3057 (4)	0,047 (2)
2)	0,0913 (7)	0,3921 (5)	0,1550 (4)	0,043 (2)
D)	0,0340 (2)	0,8177 (2)	0,2655 (1)	0,0386 (6)
10)	0,2022 (9)	0,7943 (6)	0,1727 (5)	0,042 (2)
11)	0,346 (1)	0,8650 (7)	0,1418 (6)	0,054 (3)
12)	0,485 (1)	0,8458 (8)	0,0756 (6)	0,066 (4)
13)	0,484 (1)	0,7535 (8)	0,0391 (6)	0,067 (4)
14)	0,339 (1)	0,6821 (8)	0,0692 (6)	0.065 (4)
15)	0,201 (1)	0,7024 (6)	0,1351 (5)	0,050 (3)
20)	0,1498 (9)	0,8399 (6)	0,3557 (5)	0,041 (2)
21)	0,271 (1)	0,7653 (6)	0,3881 (6)	0,051 (3)
22)	0,369 (1)	0,7822 (7)	0,4546 (6)	0,057 (3)
23)	0,347 (1)	0,8771 (7)	0,4911 (6)	0,060 (3)
24)	0,231 (1)	0,9502 (7)	0,4590 (6)	0,057 (3)
25)	0,130 (1)	0,9347 (6)	0,3929 (5)	0,048 (3)
30)	-0,0937 (9)	0,9318 (6)	0,2231 (5)	0,042 (2)
31)	-0,248 (1)	0,9475 (6)	0,2824 (6)	0,053 (3)
32)	-0,355 (1)	1,0330 (7)	0,2540 (7)	0,063 (4)
33)	-0,307(1)	1,0999 (7)	0,1652 (7)	0,058 (3)
34)	-0,153 (1)	1,0824 (7)	0,1056 (6)	0,062 (3)
35)	-0,047 (1)	0,9983 (6)	0,1354 (6)	0,050 (3)
40)	-0,1194 (9)	0,7056 (5)	0,3084 (5)	0,040 (2)
41)	-0,231 (1)	0,6837 (6)	0,2470 (6)	0,052 (3)
42)	-0,354 (1)	0,5996 (6)	0,2778 (7)	0,057 (3)
43)	-0,365 (1)	0,5368 (7)	0,3672 (7)	0,057 (3)
44)	-0,257 (1)	0,5585 (7)	0,4281 (6)	0,060 (3)
45)	-0,134(1)	0,6428 (6)	0,3993 (6)	0,050 (3)

© 1990 International Union of Crystallography

Dehnicke, 1983) in 50 ml CH₂Cl₂ wurde eine Lösung von 0,344 g Diphenylacetylen (1,9 mmol) in CH₂Cl₂ getropft. Nach Abkühlung der Lösung auf 278 K entstanden schwarze Kristalle von [PPh_][ReCl_- (N_2S_2)] (Ausbeute 1,26 g = 86,5%). Einer davon $(0,12 \times 0,22 \times 0,30 \text{ mm})$ wurde auf einem Diffraktometer Siemens AED-2 bei 293 K vermessen. Gitterparameter aus 25 Reflexen, $5 < \theta < 25^{\circ}$. $\omega/2\theta$ -scan, $\sin\theta/\lambda < 1.19$ Å⁻¹, $0 \le h \le 10$, $-17 \le k$ $\leq 17, -20 \leq l \leq 20$, 'empirische' Absorptionskorrektur nach ψ -scan von vier Reflexen, relative Transmissionsfaktoren 0,163-0,263. Die Kontrollreflexe $\overline{2}02$ und $1\overline{1}4$ zeigten im Verlaufe der Messung einen kontinuierlichen Intensitätsabfall auf 84.0 bzw. 87,9% der Anfangswerte; darauf basierend wurden die Meßdaten mit einem Faktor von 1,00 bis 1,14 korrigiert. 9854 gemessene Reflexe, davon 8668 unabhängig, 1941 Reflexe mit $F < 4\sigma(F)$ als unbeobachtet gewertet; $R_{int} = 0,065$. Patterson-Synthese, Verfeinerung durch Minimieren von $\sum w(|F_o| |F_c|^2$, $w = 1/\sigma^2(F)$ bis alle $\Delta/\sigma_{max} < 0,005$, Restelektronendichte in abschließender Differenz-Fourier-Synthese <1,8 e Å⁻³, R = 0,055, wR = 0,043, S =4,00. Keine Extinktionskorrektur. H-Atomlagen in modellmäßig berechneten Positionen (C-H 0,96 Å). Die Atomparameter sind in Tabelle 1 aufgeführt.*

Suspension Eine gerührte von 4,95 g [ReCl₃(NSCl)₂]₂ (5,42 mmol; Müller, Kafitz & Dehnicke, 1983) in 50 ml Acetonitril wurden mit 3,05 g NaF (72 mmol) und 2,66 ml 15-Krone-5 (13,0 mmol 1,4,7,10,13-Pentaoxacyclopentadecan) versetzt. Nach 12 h Rühren bei Raumtemperatur wurde NaF/NaCl abfiltriert und das Filtrat auf 278 K gekühlt. Der entstandene grüne Niederschlag eines fluorhaltigen Produktes wurde abfiltriert, das Filtrat wurde auf 20 ml eingeengt. Beim Stehen entstanden aus letzterem schwarze Kristalle von [Na-15-Krone-5]-[ReCl₄(N₂S₂)]. Einer davon $(0.29 \times 0.31 \times 0.36 \text{ mm})$ wurde auf einem Diffraktometer Enraf-Nonius CAD-4 bei 292 K vermessen. Gitterparameter aus 20 Reflexen, $15 < \theta < 22^{\circ}$. ω -scan, $\sin \theta / \lambda < 0.55 \text{ Å}^{-1}$, $-2 \le h \le 11$, $-1 \le k \le 22$, $-15 \le l \le 15$, Absorptionskorrektur des vermessenen Kristalls, Transmissionsfaktoren 0,148-0,234. Intensitätsschwankungen der Kontrollreflexe $\overline{123}$ und 023 < 4.5%. 4151 gemessene Reflexe, davon 2905 unabhängig, 179 Reflexe mit $F < 2\sigma(F)$ als unbeobachtet gewertet; $R_{\rm int} = 0.033$. Patterson-Synthese, Minimieren von $\sum_{w \in [F_o]}^{m} |F_o| - |F_c|^2, \quad w = 1/\sigma^2(F) \quad \text{bis alle } \Delta/\sigma_{\max} < 1, 0.$ Restelektronendichte in abschließender Differenz-

Tabelle 2. Atomkoordinaten und Parameter U_{aq} (Å²) für den äquivalenten isotropen Temperaturfaktor (Hamilton, 1959) für [Na(15-Krone-5)][ReCl₄(N₂S₂)])

	<i>x</i>	у	Z	$U_{ m aq}$
Re(1)	0,09192 (5)	0,18895 (3)	0,08500 (3)	0,0363 (2)
C1(1)	0,3248 (3)	0,1970 (2)	0,1697 (2)	0,065 (1)
C1(2)	-0,1453 (3)	0,1863 (3)	0,0224 (2)	0,077 (1)
Cl(3)	0,0643 (3)	0,3294 (2)	0,1525 (2)	0,055 (1)
Cl(4)	0,0507 (4)	0,1099 (2)	0,2149 (2)	0,069 (1)
S(1)	0,1266 (4)	0,0537 (2)	-0,0760 (2)	0,080 (2)
S(2)	0,1248 (4)	0,2248 (2)	-0,1255 (2)	0,071 (1)
N(1)	0,1158 (9)	0,0916 (6)	0,0192 (5)	0,046 (3)
N(2)	0,1193 (9)	0,2360 (5)	-0,0226 (5)	0,042 (3)
Na	0,3654 (5)	0,3810 (3)	0,1577 (3)	0,052 (2)
O(1)	0,343 (1)	0,4781 (7)	0,2854 (6)	0,083 (4)
O(2)	0,275 (1)	0,5210 (6)	0,0964 (7)	0,078 (4)
O(3)	0,332 (1)	0,3876 (7)	-0,0122 (5)	0,075 (4)
O(4)	0,570 (1)	0,3505 (6)	0,1032 (6)	0,075 (4)
O(5)	0,567 (1)	0,3782 (7)	0,2880 (7)	0,087 (4)
C(1)	0,314 (2)	0,565 (1)	0,252 (2)	0,11 (1)
C(2)	0,206 (2)	0,563 (1)	0,161 (2)	0,107 (9)
C(3)	0,191 (2)	0,503 (1)	0,010 (2)	0,13 (1)
C(4)	0,271 (2)	0,466 (1)	-0,055 (1)	0,12 (1)
C(5)	0,436 (2)	0,361 (2)	-0,0542 (9)	0,12 (1)
C(6)	0,527 (2)	0,304 (1)	0,012 (2)	0,12 (1)
C(7)	0,665 (2)	0,310 (1)	0,177 (1)	0,100 (8)
C(8)	0,688 (2)	0,368 (1)	0,259 (1)	0,108 (8)
C(9)	0,572 (3)	0,444 (2)	0,350 (2)	0,18 (1)
C(10)	0,458 (2)	0,473 (2)	0,365 (1)	0,15 (1)

Fourier-Synthese $< 1,1 \text{ e} \text{ Å}^{-3}$, R = 0,044, wR = 0,037, S = 4,01. CH₂-Gruppen als starre Gruppen angenommen (C—H 0,96 Å). Extinktionskorrektur gemäß $F(1 - kF^2/\sin\theta)$ mit k = 0,14 (4) $\times 10^{-4}$. Die Atomparameter sind in Tabelle 2 aufgeführt.* Atomformfaktoren nach Cromer & Mann (1968), f', f'' nach Cromer & Liberman (1970). Rechenprogramme nach Sheldrick (1976, 1986) und Johnson (1965).

Diskussion. In beiden Verbindungen sind gleichartige Anionen $[\text{ReCl}_4(N_2S_2)]^-$ vorhanden, deren Aufbau demjenigen von [AsPh₄][ReCl₄(N₂S₂)] (Conradi, Hauck, Müller & Dehnicke, 1986), [PPh₃Cl]-[ReCl₄(N₂S₂)] [Hiller, Mohyla, Strähle, Hauck & Dehnicke, 1984) und $[PPh_4][ReCl_2F_2(N_2S_2)]$ (Vogler, Dehnicke & Hiller, 1989) entspricht (Fig. 1). Die in Tabelle 3 zusammengestellten Bindungsabstände stimmen für alle fünf Verbindungen weitgehend überein, ausgenommen die S-S-Bindung. Diese ist im $[PPh_4][ReCl_2F_2(N_2S_2)]$ mit 2,429 (7) Å relativ kurz, im $[PPh_4][ReCl_4(N_2S_2)]$ ist sie mit 2,543 (4) Å etwa so kurz wie im $[PPh_3Cl][ReCl_4(N_2S_2)]$ [2,530 (2) Å], während sie im [Na(15-Krone-5)]- $[\text{ReCl}_4(N_2S_2)]$ mit 2,704 (5) Å ungewöhnlich lang ist; die Werte für [AsPh₄][ReCl₄(N₂S₂)] und [PPh₄]- $[\text{ReBr}_4(N_2S_2)]$ liegen dazwischen [2,59 (2) bzw. 2,64 (1) Å], siehe bei Conradi, Hauck, Müller & Dehnicke (1986), wo auch diese Abstände bereits diskutiert und mit anderen Verbindungen verglichen Zur theoretischen Behandlung wurden. der Bindungsverhältnisse im ReN₂S₂-Ring siehe Kersting & Hoffmann (1990).

^{*} Die H-Atomkoordinaten, die Parameter für den anisotropen Temperaturfaktor und die Liste der beobachteten und berechneten Strukturfaktoren sind beim British Library Document Supply Centre (Supplementary Publication No. SUP 53070: 48 pp.) hinterlegt. Kopien sind erhältlich durch: The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

^{*} Siehe vorgehende Fussnote.

Re-Cl(1) 2,389 (3) 2,399 Re-Cl(2) 2,369 (3) 2,368	(3) (3) (3)
Re-Cl(2) 2,369 (3) 2,368	(3) (3)
10 2,507 (5) 2,500	(3)
$R_{e-1}(3)$ 2 366 (3) 2 399	
R_{e} (1(4) 2 336 (3) 2 360	$\tilde{\alpha}$
Re N(1) = 1.795 (7) = 1.811	(3)
$R_{c-N(2)} = 1800(6)$ 1801	(8)
N(1) = S(1) 1,505 (0) 1,507 (0) 1,508 (0)	(8)
N(2) - S(2) 1 562 (7) 1 519	(8)
S(1) = S(2) 2 558 (4) 2 704	(5)
	(5)
Cl(1)—Re—Cl(2) 171,9 (1) 171,8	(1)
Cl(1)—Re—Cl(3) 87,8 (1) 86,6	(1)
Cl(1)—Re—Cl(4) 87,6 (1) 87,5	(1)
Cl(2)—Re—Cl(3) 87,5 (1) 88,0	(1)
Cl(2)—Re—Cl(4) 86,2 (1) 86,7	(1)
Cl(3)—Re—Cl(4) 95,1 (1) 93,9	(1)
N(1)—Re—Cl(1) 92,9 (2) 94,2	(3)
N(1)—Re—Cl(2) 92,7 (2) 92,0	(3)
N(1)—Re—Cl(3) 171,3 (2) 171,7	(3)
N(1)—Re—Cl(4) 93,6 (2) 94,3	(3)
N(2)—Re—Cl(1) 92,4 (2) 95,1	(3)
N(2)—Re—Cl(2) 94,4 (2) 91,4	(3)
N(2)—Re—Cl(3) 90,2 (2) 93,3	(3)
N(2)—Re—Cl(4) 174,7 (2) 172,5	(3)
N(1)—Re—N(2) 81,1 (3) 78,5	(4)
Re-N(1)-S(1) 144,8 (4) 146,7	(6)
Re-N(2)-S(2) 142,2 (4) 149,2	(6)
N(1)—S(1)—S(2) 85,2 (3) 83,0	(4)
N(2)—S(2)—S(1) 86,6 (3) 81,1	(3)
P-C(10) 1.787 (3) Na-Cl(1) 2.846	(5)
P = C(20) 1,773 (8) Na = C(3) 3 144	(6)
P = C(30) 1 801 (8) Na = O(1) 2 428	(9)
P-C(40) 1 788 (7) Na-O(2) 2.410	(9)
C - C 1.37-1.42 (1) Na $- O(3)$ 2.414	(8)
C(10) - P - C(20) 104.8 (3) Na - O(4) 2.441	(9)
C(10) - P - C(30) 110.8 (4) Na $- O(5)$ 2.442	(9)
C(10) - P - C(40) 111.8 (3) $O - C$ 1.35-1.47	(2)
C(20) - P - C(30) 112.1 (4) $C - C$ 1.45-1.51	(3)
C(20) - P - C(40) 111.3 (4) $C - O - C$ 111-119	(2)
C(30)-P-C(40) 106,1 (4) C-C-O 107-110	(l)

Tabelle 3. Bindungsabstände (Å) und -winkel (°)

Der Kronenether im $[Na(15-Krone-5)][ReCl_4-(N_2S_2)]$ ist mit seinen fünf Sauerstoffatomen an das Na⁺-Ion koordiniert, das seinerseits noch in Kontakt zu zwei Cl-Atomen des Anions steht (Fig. 1). Diese Anordnung um das Na⁺-Ion ist typisch für eine große Zahl von Kronenetherverbindungen.

 $[PPh_4][ReCl_4(N_2S_2)]$ kristallisiert nicht isotyp zum $[AsPh_4][ReCl_4(N_2S_2)]$, trotzdem sind beide Struk-turen sehr ähnlich. Sie sind mit dem $[AsPh_4]$ -[RuNCl₄]-Typ verwandt, bei dem in der Raumgruppe P4/n die Kationen $\overline{4}$ -Lagen einnehmen und die Anionen sich auf vierzähligen Drehachsen befinden (Müller, 1980). Bei gleichartiger Packung ist die Symmetrie des $[AsPh_4][ReCl_4(N_2S_2)]$ auf P2/nerniedrigt, da die Anionen über keine vierzählige Symmetrie verfügen; sie sind entlang von zweizähligen Drehachsen gestapelt. Der im Vergleich zum AsPh⁺₄-Ion etwas kleinere Platzbedarf des PPh⁺₄-Ions bedingt eine Verringerung der Gitterparameter und läßt den Anionen offenbar nicht mehr genug Platz, sich unter Erhalt der zweizähligen Achse zu stapeln: sie sind relativ zur Stapelrichtung verkippt, die Symmetrie erniedrigt sich auf $P\overline{1}$ (Fig. 2).

Wir danken dem Fonds der Chemischen Industrie für gewährte Unterstützung.

Fig. 1. Das Ionenpaar $[Na(15-Krone-5)][ReCl_4(N_2S_2)]$ mit Atomabständen (Å) und Ellipsoiden der thermischen Schwingung (50% Aufenthaltswahrscheinlichkeit).

Fig. 2. Die Packungen und Atomabstände (Å) von [AsPh₄]-[ReCl₄(N₂S₂)] und [PPh₄][ReCl₄(N₂S₂)] in Projektion auf die acbzw. bc-Ebene.

Literatur

CONRADI, E., HAUCK, H. G., MÜLLER, U. & DEHNICKE, K. (1986). Z. Anorg. Allg. Chem. 539, 39–49. CROMER, D. T. & LIBERMAN, D. (1970). J. Chem. Phys. 53, 1891–1898.

CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321-324. DEHNICKE, K. & MÜLLER, U. (1985). Comments Inorg. Chem. 4, 213-228.

HAMILTON, W. C. (1959). Acta Cryst. 12, 609-610.

- HILLER, W., MOHYLA, J., STRÄHLE, J., HAUCK, H. G. & DEHNICKE, K. (1984). Z. Anorg. Allg. Chem. 514, 72-78.
- JOHNSON, C. K. (1965). ORTEP. Bericht ORNL-3794. Oak Ridge National Laboratory, Tennessee, VStA.

KERSTING, M. & HOFFMANN, R. (1990). Inorg. Chem. 28, 279–284. Müller, U. (1980). Acta Cryst. B36, 1075–1081.

MÜLLER, U., KAFITZ, W. & DEHNICKE, K. (1983). Z. Anorg. Allg. Chem. 501, 69–78.

- SHELDRICK, G. M. (1976). SHELX76. Programme für die Strukturbestimmung. Univ. Cambridge, England.
- SHELDRICK, G. M. (1986). SHELXS86. Programme für die Strukturbestimmung. Univ. Göttignen, Bundesrepublik Deutschland. VOGLER, S., DEHNICKE, K. & HILLER, W. (1989). Z. Naturforsch.
- VOGEER, S., DEHNICKE, K. & HILLER, W. (1989). Z. Waturjorsch. Teil B, 44, 1509–1512.

Acta Cryst. (1990). C46, 1992-1994

Structure of ErFe(CN)₆.4H₂O

BY A. DOMMANN, H. VETSCH AND F. HULLIGER

Laboratorium für Festkörperphysik, ETH, CH-8093 Zürich, Switzerland

AND W. PETTER

Institut für Kristallographie und Petrographie, ETH, CH-8092 Zürich, Switzerland

(Received 10 September 1989; accepted 12 February 1990)

Abstract. Erbium iron hexacyanide tetrahydrate, $M_r = 452 \cdot 28$, orthorhombic, *Cmcm*, $a = 7 \cdot 3212$ (6), $b = 12 \cdot 7576$ (8), $c = 13 \cdot 5636$ (9) Å, $(3^{1/2}a/b) - 1 = -6 \cdot 0$ (1) × 10⁻³, $V = 1266 \cdot 9$ (3) Å³, Z = 4, $D_x = 2 \cdot 367$, $D_m = 2 \cdot 333$ (5) g cm⁻³, λ (Mo $K\overline{\alpha}$) = 0.71073 Å, $\mu = 77 \cdot 8$ cm⁻¹, F(000) = 848, T = 295 K, R = 0.020 for 641 unique reflections. The structure of ErFe(CN)₆.4H₂O is of the SmFe(CN)₆.4H₂O type.

Introduction. Recently, Mullica, Perkins, Sappenfield & Leschnitzer (1989) reported on the determination of the structure of monoclinic ErFe(CN)₆,4H₂O. Some years ago we had ourselves (Hulliger, Landolt & Vetsch, 1976) investigated the rare-earth ferricyanides LnFe(CN)₆.4H₂O in powder form and orthorhombic assigned them the structure determined for SmFe(CN)₆.4H₂O by Kietaibl & Petter (1974). A controversy arose last year when Mullica, Perkins, Sappenfield & Grossie (1988) refined the structure of SmFe(CN)₆.4H₂O in the monoclinic space group $P2_1/m$. In our view this symmetry is too low and not compelled by the arrangement of the structural units $[LnN_6]$ and [FeC₆]. Based on their own intensity data we disproved their space group assignment (Gramlich, Petter & Hulliger, 1990). We received support of our view from Marsh (1989) who independently came to the same conclusion. After we had deduced from the given lattice parameters (Gramlich, Petter & Hulliger, 1990) that Mullica's supposed ErFe(CN)₆.4H₂O crystal was in fact SmFe(CN)₆.4H₂O we decided to

start a complete structure determination on $ErFe(CN)_{6.}4H_2O$. Since in the meantime Mullica & Sappenfield (1989) transcribed their data for $SmFe(CN)_{6.}4H_2O$ and $SmCo(CN)_{6.}4H_2O$ to the orthorhombic space group *Cmcm* we abstain from presenting the detailed proof of the correctness of this space group by comparing the refinements in both $P2_1/m$ and *Cmcm*.

Experimental. Single crystals were synthesized by the double-infusion technique (Huber, Hulliger & 1 M solutions of ErCl₃ and Vetsch. 1980). $K_3Fe(CN)_6$ were infused at a speed of 0.1 ml h⁻¹ into 500 ml of a saturated aqueous solution of $ErFe(CN)_6$ kept at 335 K. Within three days small crystals grew on the walls of the growth vessel. The most perfect crystals (probably grown while floating on the surface) had the form of hexagonal plates of 0.1-0.3 mm edge length and were transparent red under the microscope. Their density was measured by the flotation method in a mixture of dibromomethane and *para*-xylene. The unit-cell dimensions of ErFe(CN)₆.4H₂O crystals of the same batch were derived from a Guinier powder pattern taken with Fe $K\alpha_1$ radiation and silicon (assuming a = 5.43047 Å) as calibration.

The X-ray diffraction measurements for the structure determination were performed on a Picker FACS-1 diffractometer with STOE software and encoders using monochromatic molybdenum $K\overline{\alpha}$ ($\lambda = 0.71073$ Å) radiation. We chose an optically perfect

0108-2701/90/111992-03\$03.00

© 1990 International Union of Crystallography